
Application Note Dec-2004

SCARA Robot Kinematics Example 1

SCARA Robot Kinematics
A 4-axis SCARA (Selective Compliance Assembly Robot Arm) robot has parallel shoulder, elbow, and
wrist rotary joints, and a linear vertical axis through the center of rotation of the wrist. This type of
manipulator is very common in light-duty applications such as electronic assembly. Most users want to
program this device as an XYZ Cartesian system with a rotary angle (C) for the tool, leaving the
controller to compute the required joint angles and lengths. Turbo PMAC’s integrated kinematics
algorithms make this easy.

Mechanism Description
In this example, the upper-arm length (L1) is 400 mm, and the lower-arm length (L2) is 300 mm. The
shoulder joint (S), the elbow joint (E), and the wrist joint (W) have resolutions of 1000 counts per degree.
Rotation in the positive direction for all 3 joints is counter-clockwise when viewed from the top. The
vertical axis (V) has a resolution of 100 counts per millimeter, and movement in the positive direction
goes up. When the shoulder, elbow, and wrist joints are at their zero-degree positions, the two links are
both extended along the X-axis and the tool orientation C is at zero degrees. When the vertical axis is at
its home position, it is 250 mm above the Z-axis zero point. Due to wiring constraints, rollover of the
rotary axes is not permitted.

This diagram shows a top view of the mechanism. Z-axis motion is into and out of the page.

 W

C

 Y Z,V

 L2 E

 L1 S

 X

Forward Kinematics
The forward-kinematic equations are:

)EScos(2L)Scos(1LX ++=

)ESsin(2L)Ssin(1LY ++=

WESC ++=

0ZVZ +=

To implement these equations in a Turbo PMAC forward-kinematic program for Coordinate System 1
that converts the shoulder angle in Motor 1, the elbow angle in Motor 2, the wrist angle in Motor 3, and
the vertical position in Motor 4, to the X, Y, and Z tip coordinates in millimeters, and the tip angle C in
degrees, the following setup and program could be used:

Macro Substitution Definitions
Status/control bits using suggested M-variable definitions
#define Mtr1Homed M145 ; Motor 1 home complete bit
Mtr1Homed->Y:$0000C0,10,1 ; Bit 10 in Motor 1 status word
#define Mtr2Homed M245 ; Motor 2 home complete bit
Mtr2Homed->Y:$000140,10,1 ; Bit 10 in Motor 2 status word
#define Mtr3Homed M345 ; Motor 3 home complete bit
Mtr3Homed->Y:$0001C0,10,1 ; Bit 10 in Motor 3 status word

Dec-2004 Application Note

2 SCARA Robot Kinematics Example

#define Mtr4Homed M445 ; Motor 4 home complete bit
Mtr4Homed->Y:$000240,10,1 ; Bit 10 in Motor 4 status word
#define CS1RunTimeErr M5182 ; CS 1 run-time error bit
CS1RunTimeErr->Y:$00203F,22,1 ; Bit 22 in C.S. 1 status word

Definitions to Variables with Fixed Functions
#define Mtr1KinPos P1 ; #1 pos in cts for kinematics
#define Mtr2KinPos P2 ; #2 pos in cts for kinematics
#define Mtr3KinPos P3 ; #3 pos in cts for kinematics
#define Mtr4KinPos P4 ; #4 pos in cts for kinematics
#define XkinPos Q7 ; X-axis pos in mm for kin
#define YkinPos Q8 ; Y-axis pos in mm for kin
#define ZkinPos Q9 ; Z-axis pos in mm for kin
#define CkinPos Q3 ; C-axis pos in deg for kin

Definitions to Variables with Open Functions
#define Len1 Q81 ; Shoulder-to-elbow length
#define Len2 Q82 ; Elbow-to-wrist length
#define Ks Q83 ; Shoulder counts/degree
#define Ke Q84 ; Elbow counts/degree
#define Kw Q85 ; Wrist counts/degree
#define Kv Q86 ; Vertical counts/degree
#define Z0 Q87 ; Z-axis offset
#define Spos Q88 ; Shoulder position in deg
#define Epos Q89 ; Elbow position in deg
#define Wpos Q90 ; Wrist position in deg

Setup for Program
I15=0 ; Trig calcs in degrees
I5150=1 ; Enable kinematics for C.S.1

Set System Constants
Len1=400 ; L1 (mm)
Len2=300 ; L2 (mm)
Ks=1000 ; Counts per degree for shoulder
Ke=1000 ; Counts per degree for elbow
Kw=1000 ; Counts per degree for wrist
Kv=100 ; Counts per mm for vertical
Z0=250 ; Z-axis offset in mm

Forward-Kinematic Program Buffer
&1 OPEN FORWARD ; Forward kinematics for CS 1
CLEAR ; Erase existing contents
; Check if motor positions properly referenced
IF (Mtr1Homed=1 AND Mtr2Homed=1 AND Mtr3Homed=1 AND Mtr4Homed=1)
 SPos=Mtr1KinPos/Ks ; Shoulder angle in degrees
 EPos=Mtr2KinPos/Ke ; Elbow angle in degrees
 WPos=Mtr3KinPos/Kw ; Wrist angle in degrees
 XKinPos=Len1*COS(SPos)+Len2*COS(SPos+EPos) ; Tool-tip X
 YKinPos=Len1*SIN(SPos)+Len2*SIN(SPos+EPos) ; Tool-tip Y
 CKinPos=SPos+EPos+WPos ; Tool-tip angle
 ZKinPos=Mtr4KinPos/Kv+Z0 ; Tool-tip height
ELSE ; Not referenced; halt operation
 CS1RunTimeErr=1 ; Set run-time error bit
ENDIF
CLOSE

This forward-kinematics program will be executed automatically every time Coordinate System 1 starts a
motion program. It can also be executed on a PMATCH command.

Application Note Dec-2004

SCARA Robot Kinematics Example 3

Inverse Kinematics
Limiting ourselves to positive values of the elbow (E) angle, producing the right-armed case (done by
selecting the positive arc-cosine solutions), we can write our inverse kinematic equations as follows:

To implement these equations in a Turbo PMAC inverse-kinematic program for Coordinate System 1 that
converts the X, Y, and Z tip coordinates in millimeters and the tip angle C in degrees to the shoulder

angle in Motor 1, the elbow angle in Motor 2, the wrist angle in Motor 3, and the vertical position in
Motor 4, the following program could be used. System constants are the same as for the above forward
kinematic program.

Additional Macro Substitution Definitions
#define CosTerm Q0 ; 2nd arg for ATAN2
#define SumLenSqrd Q93 ; L1^2 + L2^2
#define ProdOfLens Q94 ; 2*L1*L2
#define DifLenSqrd Q95 ; L1^2 – L2^2
#define Temp1 Q96
#define Temp2 Q97
#define SplusQ Q98 ; Shoulder-to-wrist angle (deg)
#define Qpos Q99 ; Angle inside triangle (deg)

Additional Setup for Inverse Kinematic Program
&1
#1->I ; Motor 1 assigned to inverse kinematic axis in CS 1
#2->I ; Motor 2 assigned to inverse kinematic axis in CS 1
#3->I ; Motor 3 assigned to inverse kinematic axis in CS 1
#4->I ; Motor 4 assigned to inverse kinematic axis in CS 1
I5113=10 ; Solve inv. kin. every 10 msec along path

Pre-compute Additional System Constants
SumLenSqrd=Len1*Len1+Len2*Len2
ProdOfLens=2*Len1*Len2
DifLenSqrd=Len1*Len1-Len2*Len2

Inverse-Kinematic Algorithm to be Executed Repeatedly
&1 OPEN INVERSE ; Inverse kinematics for CS 1
CLEAR ; Erase existing contents
Temp1=XKinPos*XKinPos+YKinPos*YKinPos ; X^2+Y^2
Temp2=(Temp1-SumLenSqrd)/ProdOfLens ; cos(E)
IF (ABS(Temp2)<0.996) ; Valid soln w/ 5 deg margin?
 EPos=ACOS(Temp2) ; Elbow angle (deg)
 CosTerm=XKinPos ; X into cos argument for ATAN2
 SPlusQ=ATAN2(YKinPos) ; S+Q = ATAN2(Y,X)

0

22
1

2
2

2
1

22
1

21

2
2

2
1

22
1

)(
2

cos

),(2arctan
2

cos

ZZV
ESCW
QQSS

YXL

LLYXQ

XYQS
LL

LLYXE

−=
−−=
−+=

+

−++
+=

=+

 −−+
+=

−

−
 (X, Y)
 Y

 L2
 √(X2+Y2)

 E
 L1
 Q S
 X

Dec-2004 Application Note

4 SCARA Robot Kinematics Example

 QPos=ACOS((Temp1+DifLenSqrd)/(2*Len1*SQRT(Temp1))) ; Q (deg)
 SPos=SPlusQ-QPos ; Shoulder angle (deg)
 Mtr1KinPos=SPos*Ks ; Convert to counts
 Mtr2KinPos=EPos*Ke ; Convert to counts
 Mtr3KinPos=(CKinPos-SPos-EPos)*Kw ; Wrist position in counts
 Mtr4KinPos=(ZKinPos-Z0)*Kv ; Vertical position in counts
ELSE ; Not valid, halt operation
 CS1RunTimeErr=1 ; Set run-time error bit
ENDIF
CLOSE

The inverse-kinematic program is run once per move segment (every I5113 msec) for LINEAR and
CIRCLE-mode moves; it is run once per programmed move for other move modes. Note that this
example checks for illegal (out-of-range) move commands by checking to see if the cosine of the elbow
angle is in legal range. Other checks are possible as well.

Extension: Tip-Mode and Joint-Mode Programming
This following extension to the above example permits both tip-mode and joint-mode programming. In
joint-mode programming, the kinematics algorithms are really pass-throughs, just scaling positions
between raw counts and degrees.

In joint mode, it is possible to switch between the right-armed case and the left-armedcase. Once back in
tip mode, the arm will stay in that orientation. In the inverse kinematic algorithm, the forward kinematics
for the mode not used are computed each cycle so the mode can be switched properly at any time.

This extension uses the setup and definitions from the above example, and adds a few more.

Additional Substitutions and Definitions
#define AkinPos Q1 ; A-axis pos in deg for kin
#define BkinPos Q2 ; B-axis pos in deg for kin
#define WkinPos Q6 ; W-axis pos in deg for kin
#define SgnAcos Q91 ; Determines left from right

Forward-Kinematic Program Buffer
&1 OPEN FORWARD ; Forward kinematics for CS 1
CLEAR ; Erase existing contents
; Check if motor positions properly referenced
IF (Mtr1Homed=1 AND Mtr2Homed=1 AND Mtr3Homed=1 AND Mtr4Homed=1)
 ; Compute scaled joint positions for joint-mode programming
 AKinPos=Mtr1KinPos/Ks
 BKinPos=Mtr2KinPos/Ke
 WKinPos=Mtr3KinPos/Kw
 ; Compute tool-tip positions for tip-mode programming
 XKinPos=Len1*COS(AKinPos)+Len2*COS(AKinPos+BKinPos)
 YKinPos=Len1*SIN(AKinPos)+Len2*SIN(AKinPos+BKinPos)
 CKinPos=AKinPos+BKinPos+WKinPos
 ZKinPos=Mtr4KinPos/Kv+Z0 ; For both tip and joint
 IF(BKinPos<0) ; Left-armed case?
 SgnAcos=-1
 ELSE ; Right-armed case
 SgnAcos=1
 ENDIF
ELSE ; Not referenced; halt operation
 CS1RunTimeErr=1 ; Set run-time error bit
ENDIF
CLOSE

Application Note Dec-2004

SCARA Robot Kinematics Example 5

Inverse-Kinematic Algorithm to be Executed Repeatedly
&1 OPEN INVERSE ; Inverse kinematics for CS 1
CLEAR ; Erase existing contents
IF(TipMode=1) ; Tip-mode programming?
 Temp1=XKinPos*XKinPos+YKinPos*YKinPos ; X^2+Y^2
 Temp2=(Temp1-SumLenSqrd)/ProdOfLens ; cos(E)
 IF (ABS(Temp2)<0.996) ; Valid soln w/ 5 deg margin?
 BKinPos=ACOS(Temp2) ; Elbow angle (deg)
 BKinPos=BKinPos*SgnAcos ; Select sign
 CosTerm=XKinPos ; X into cos argument for ATAN2
 SPlusQ=ATAN2(YKinPos) ; S+Q = ATAN2(Y,X)
 QPos=ACOS((Temp1+DifLenSqrd)/(2*Len1*SQRT(Temp1))) ; Q (deg)
 AKinPos=SPlusQ-QPos ; Shoulder angle (deg)
 WKinPos=CKinPos-AKinPos-BKinPos ; Wrist angle (deg)
 Mtr1KinPos=AKinPos*Ks ; Shoulder position in counts
 Mtr2KinPos=BKinPos*Ke ; Elbow position in counts
 Mtr3KinPos=WKinPos*Kw ; Wrist position in counts
 Mtr4KinPos=(ZKinPos-Z0)*Kv ; Vertical position in counts
 ELSE ; Not valid, halt operation
 CS1RunTimeErr=1 ; Set run-time error bit
 ENDIF
ELSE ; Joint-mode programming
 Mtr1KinPos=AKinPos*Ks ; Shoulder position in counts
 Mtr2KinPos=BKinPos*Ke ; Elbow position in counts
 Mtr3KinPos=WKinPos*Kw ; Wrist position in counts
 Mtr4KinPos=(ZKinPos-Z0)*Kv ; Vertical position in counts
 ; Compute tip positions for future tip-mode commands
 XKinPos=Len1*COS(AKinPos)+Len2*COS(AKinPos+BKinPos)
 YKinPos=Len1*SIN(AKinPos)+Len2*SIN(AKinPos+BKinPos)
 CKinPos=AKinPos+BKinPos+WKinPos
ENDIF
CLOSE

	SCARA Robot Kinematics
	Mechanism Description
	Forward Kinematics
	Inverse Kinematics
	Extension: Tip-Mode and Joint-Mode Programming

